NASA Contractor Report 166122 (Revised)
em———

Correction, Improvement
and Model Verification of
CARE Ill, Version 3

D. M. Rose, J. W. Manke,
R. E. Altschul and D. L. Nelson

BOEING COMPUTER SERVICES
SEATTLE, WASHINGTON 98124

Contract NAS1-16900
December 1987

{MASA-CH=166122-FeV) CCHEBECTICN, o N8G~-1z2221
AFMERCVLEMEML AMD MCLEL VEhlfI(A]Ity CF CAGrE
i, VERSICM 3 Interinm Feport (Ekcedng

;ter S ices Cc. 99 CSCL 12A dnclas
ccuprier setd ) F G3,59 01723017

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665






TABLE OF CONTENTS

5.

7‘

SUMMARY
THE MARKOV COVERAGE MODEL

MARKOV PROCESSES

MARKOVIAN SINGLE FAULT COVERAGE MODEL
.3 MARKOVIAN DOUBLE FAULT COVERAGE MODEL
2.4 IMPLEMENTATION OF MODEL

NN
W N =

SYSTEM FAULT TREE ANALYSIS

3.1 FAULT VECTOR PROCESSING
3.2 IMPLEMENTATION OF FAULT VECTOR PROCEDURE

SUBRUN ANALYSIS

4.1 SYSTEM FAULT TREE PROCESSING
4.2 IMPLEMENTATION OF SYSTEM FAULT TREE PROCESSING

RELIABILITY MODEL

5.1 JUSTIFICATION OF THE MODEL
5.2 MACRO MODEL RATE DERIVATION
5.3 IMPLEMENTATION OF MODEL
TEST STRESSING

6.1 FTMP
6.2 SIFT

REFERENCES

APPENDIX A

A.1 CALL TREE SPECIFICATIONS
A.2 DESIGN SPECIFICATIONS






LIST OF FIGURES

Page
2.2-1 Markovian Single Fault Coverage Model | 8
2.3-1 Markovian Double Fault Coverage Model 11
4,1-1 OR System Fault Tree 19
5.1-1 Macro Model - Non-Transient Fault 25
5.1-2 Macro Model - Transient Fault 26
5.1-3 Intermediate Model - Transient Fault 27
5.2-1 Status of Modules Within Each Stage 29
6.1-1 Input File for Obtaining Bound on Exhaustion 42
Failure with Dependence
6.1-2 Dependence Effect on Coverage 44
6.1-3 Input File for Estimate of Coverage Failure 45
1 Subrun
6.1-4 Critical Pair Tree for Two Subruns 48
A.1-1 CAREIN Call Tree 55
A.1-2 COVRGE Call Tree 56
A.1-3 Single Fault Call Tree 5?
A.1-4 Double Fault Call Tree 58
A.1-5 CARE3 Call Tree 59
A.1-6 NFLTVOP Call Tree 60
A.1-7 GNCPS Call Tree 61
A.1-8 GNBPS Call Tree 62
A.1-9 GNFLTVC Call Tree 63
A.1-10 SUMMAT Call Tree 64
A.2-1 CAREIN Design Sheet 65

PRECEDING PAGE BLANK NOT FILMED

i pAGR__[ [  JNTENTIONALLK RAANK



LIST OF FIGURES (Continued)

A.2-2
A.2-3
A.2-4
A.2-5
A.2-6
A.2-7
A.2-8
A.2-9
A.2-10
A.2-11
A.2-12
A.2-13
A.2-14
A.2-15
A.2-16
A.2-17
A.2-18
A.2-19
A.2-20
A.2-21
A.2-22
A.2-23
A.2-24

CRTLPRS Design Sheet
GNIQX Design Sheet
RDCPS Design Sheet
GNKXY Design Sheet
MSNGFN Design Sheet
MSNGFD Design Sheet
MSNGMT Design Sheet
MSNGMD Design Sheet
MDBLFN Design Sheet
MDBLFD Design Sheet
MDBLMT Design Sheet
MDBLMD Design Sheet
CARE3 Design Sheet
RLSBRN Design Sheet
NFLTVDP Design Sheet
RDSPS Design Sheet
GNFLTS Design Sheet
PRFLTS Design Sheet
CKSPS Design Sheet
UNRELQ Design Sheet
GNCPS Design Sheet
GNNXX Design Sheet
GNNXY Design Sheet

iv

Page
66
67
68
69
70
70
71
71
72
72
73
73
74
75
76
77
78
79
80
81
82
83
84



LIST OF FIGURES (Continued)

A.2-25
A.2-26
A.2-27
A.2-28
A.2-29
A.2-30
A.2-31
A.2-32
A.2-33
A.2-34
A.2-35

GNBPS Design Sheet
GNBXX Design Sheet
GNBXY Design Sheet
GNTXX Design Sheet
GNTXY Design Sheet
SUMMAT Design Sheet
GNFXX Design Sheet
FB1XX DesignlSheet
FBIXY Design Sheet
FB2XX Design Sheet
FB2XY Design Sheet






1. SUMMARY

CARE III is a reliability program designed for the assessment of fault-
tolerant flight control systems. This program was developed by Raytheon
under the direction of Dr. J. J. Stiffler (NASA CR-3566). CARE III, Version
3, the most recent Raytheon developed version of CARE [II, was the version of
the code used for this study.

Under NASA funding and direction, BCS was to verify the mathematical model
and code (Task 1) and test stress the program (Task 2).

During this study, several problems with CARE I[II were identified. 'These
problems concerned:

Mathematical Modeling
Numerical Procedures
Code Implementation

Use as a Design Tool

A subset of these problems was identified which could be readily addressed.
A number of code modifications (Tasks 3 and 4) are described in this
document. The resulting code, delivered by BCS to NASA in February 1984, is
referred to as CARE III, Version 4. The problems addressed under Tasks 3 and

4 were:
e MARKOV COVERAGE
The coverage module in Version 3 was numerically unstable. For the
special case of a Markov coverage model, one with constant transition

rates, a numerically stable solution was implemented in Version 4 which
is also highly efficient. This sclution is described in Section 2.0.

e SYSTEM FAULT TREE

System failure due to spares exhaustion is represented in CARE III by a
system fault tree. As implemented in Version 3, the calculation of



system unreliability does not completely represent the system fault
tree. In particular, the contribution of coverage failure to the
system unreliability may be neglected for some significant cases. The
improved fault vector selection procedure for Version 4 is described in
Section 3.

SUBRUNS

CARE III has size limitations on the critical pair fault trees (70
modules, 20 stages). To permit the handling of larger problems, the
system may be broken up into SUBRUNS, which are combined for system
assessment. As implemented in Version 3, the calculation of system
unreliability from SUBRUN unreliability does not assure a conservative
estimate of system unreliability. This problem is discussed in Section
4.1. An improved heuristic for extracting SUBRUN fault trees from the
system fauit tree for Version 4 is described in Section 4.2. Also, an
improved fault vector generator was developed which improves the run
time for large problems.

MATHEMATICAL MODEL AND IMPLEMENTATION

The mathematical model implemented in CARE III was verified for non-
transient faults (CR-166096). Under Task 4, it was also verified for
transient faults. The code has been modified in Version 4 to implement
the model correctly for transient faults. The implementation of the
sparing rules has also been corrected. Additional code changes were
also made to improve the computational efficiency. A discussion of
these efforts is given in Section 5.0.

TEST STRESSING

As part of the assessment of CARE I[II as a reliability tool, two real
fault-tolerant flight control systems were examined. Although FTMP is
a complex system with complications that are not easily represented,
CARE III offers sufficient flexibility to permit a realistic
reliability evaluation. Although SIFT is very simple in design, it is



not amenable to analysis with CARE III. This is because SIFT is
composed of an active pentaplex with spares. CARE III is designed to
handle only duplex monitoring and triplex voting for fault tolerance. .
Section 6.0 provides a description of the analyses performed.






2. THE MARKOV COVERAGE MODEL

The Coverage models characterize the system handling of faults. The Single
Fault Coverage model, SFCM, describes failures due to lack of fault detection
in a single module. The Double Fault Coverage model, DFCM, describes
failures due to coexisting faults on critical pairs of modules. Both models,
presented in NASA CR-3566 and NASA (R-166096, are defined as semi-Markov
processes with exponential and/or uniform transition distributions.

A special case arises when all transitions occur according to constant rates,
i.e., exponential transition distributions. The coverage models then become
homogeneous Markov processes. The structure of these processes allows for a
larger choice of solution techniques than those proper for Semi-Markov
models.

The following section describes the general approach for solving a time-
homogeneous Markov process. This framework is referred to in Sections 2.2
and 2.3 in the solution of the Markov coverage models SFCM and DFCM.

2.1 MARKOV PROCESSES

A Markov process is the probabilistic model that describes the dynamics of a
memory-less system, i.e., a system where the future behavior is independent
of the past when the present state is known.

In such processes, transitions between states occur at constant rates and the
probabilistic behavior is given by a system of ordinary differential

equations.

In the Coverage models there are a finite number of states which will be
numbered consecutively; state 1 is the initial state, i.e., state A in the
SFCM and state B,A; in the DFCM.

The coverage functions to be computed are some state probabilities and some
intensities of entry into absorbing states. The problem reduces to finding
the former since the latter are linear combinations of these.

BAGE_ Y NTENTIONALLY BLANK

PRECEDING PAGE BLANK NOT FILMED

i



A general algorithm used to evaluate the coverage functions is composed of

two steps:

1. Evaluate P(t), the vector of state probabilities for non-absorbing
states.

P(t) is obtained as the solution to the system of ordinary differential

equations
d
_— P(t) = Gl P(t),
dt
P(0) = {1 if i is the initial state,
l 0 otherwise,

where G, is the transpose of the matrix of transition rates between non-
absorbing states.

2. Evaluate p(t), the vector of intensities of entry into absorbing states.
p(t) is obtained as a linear combination of P(t).
p(t) = Go P(t)

where Go is the transpose of the matrix of rates for transition from
non-absorbing to absorbing states.

In the next two sections this algorithm is adapted to the characteristics of
the two coverage models and to the specific functions to be evaluated in each

case.



hY

ORIGINAL PAGE IS
OF POOR QUALITY

2.2 MARKOVIAN SINGLE FAULT COVERAGE MODEL

Under the assumption that all transitions occur at constant rates, the SFCM
becomes a Markov process with states, transitions, and rates as shown in
Figure 2.2-1.

The functions required by the Macro Reliability Model as outputs from the
SFCM are

Pe(t) ¢ intensity of entry into failure state F,
Poe(t) : intensity of entry in detected as permanent state DP,
Ps(t) : probability of benign state B,
Ps(t) : probability of non-benign state B, and
P(t) : probability of latent state L,
where B = aggregate of states A, A: and B
and L= B for transient faults,
aggregate of states B and B otherwise.

The desired functions are obtained as follows:

(i) Compute the state probabilities for the states A, B, A; and B
(P(t), 1i=1,2,3,4) by solving the four dimensional system of
differential equations. '

2 ey =6 et

dt

where G is given by

-(a+8Pa+p) 8 (1-Pn)ec 0
a -8 ) (1-Pg)ec
p 0 -(e+a) B
) 0 a -(e+8)



|9pow abeianod 1 ne4 3)6uis ueinodiel |-z'z 31nbiy

813

3 (1)

3(>-1)

Vi3

()

(84-1)

(Vd-1) ?

Ve




(ii) Evaluate the regquired functions as linear combinations of the'
functions obtained in (i). The specific calculations for each
function and each fault type are shown in Table 2.2-1.

2.3 MARKOVIAN DOUBLE FAULT COVERAGE MODEL
The Markovian DFCM is shown in Figure 2.3-1.

The only function required as output from the DFCM is por(t): intensity of
entry into the failure state DF.

This function is evaluated as
por(t) = A:Pi(t) + Xy Py(t)
where the vector P(t) = (Pdt), Py(t), Pﬁt)) is the solution to the system

9 p(e) =6 P(L),

dt

with matrix G given by

-(B1+Y2) 0 4 B,
o] -(By+Yy) B,
GZ 0.1 _(Bl+82)

2.4 IMPLEMENTATION OF MODEL

As shown in the previous section, the coverage model may be formulated as a
system of ordinary differential eguations (ODE's) for the Markov case. The
single fault model is fourth order and the double fault model is third order.
Solution of the Markov model as a system of ODE's, rather than as a system of
Volterra integral equations, has saveral advantages. Software for the
numerical solution of ODE's is available that provides high order, variable
stepsize and numerically stable solutions. These features may be combined to
develop a reliable solution procedure for the Markov case that 1is highly

ORIGINAL PAGE IS
9 OF POOR QUALITY



[(})%d + (1)Ed] 3 (2-1)

[(0)¥d + (1)€d] 3 (>-1)

‘pa

1nbaisjou ase suonduNy asayy (

(VEd 2 (>-1)

*

)

(3)"d 843> +
(3)€dVd3> + (1)'d VaQ

(3)Pd + (3)€d + (1)\d

MEd + (0)%d + (M4

(MEd + (1)t

(3)%d + (M)Ed + (1)*d

(1)%d + (1)E&d + (W)

(1)Ed + (V'd

0=y ‘g<»
IN3ISNVYL

WJ4S WOY4 SNOILONNS LNdLNO L-Z'Z2 318Vl

(1)

0o<d '»
INILLIWYILNI

S3dAl 1NV4

O HQ =D
ININVYINY3Ad

SNOILINNS
1Nnd1ino

10



A2=B1+(1-Pa,) 82+,

12 B2+ (1-P4,) 8140y

Figure 2.3-1 Markovian Double Fault Coverage Mode!

11



accurate, yet efficient. In Task 3, BCS implemented the GEARB algorithm for
ODE's in Version 4; it has proven to be efficient (up to 200 times faster
than the Version 3 code for solving the same Markov model) and numerically

stable.

Implementation of the 0DE solution method for the Markov coverage model
required the addition of eight new subroutines to the COVRGE module and
inclusion of the GEARB numerical integration package (HSGEAR). The Version 4
code provides the user the option to use the Version 3 solution procedure or
the Version 4 method for the Markov case. (Variable MARKOV in NAMELIST set
FLTTYP may be set to 1 (default) to select the Version 4 method). Figures
A.1-2 to A.1-4 illustrate the structure of the Version 3 and Version 4 code
and show which modules were modified or added.

For the single fault coverage model, subroutine MSNGFN computes the solution
using HSGEAR. Subroutine MSNGFD is wused by HSGEAR to evaluate the
derivatives of the state probabilities. After the coverage model is solved,
the moments of the output coverage functions are evaluated by MSNGMT using
HSGEAR. Subroutine MSNGMD is used Dby HSGEAR to evaluate the integrand for
the moment calculation. For the double fault coverage model, a procedure
similar to the single fault case is used to compute the solution and moments
of the output coverage functions using subroutines MDBLFN, MDBLFD, MDBLMT and
MDBLMD.

12



3. SYSTEM FAULT TREE ANALYSIS

In the CARE III program the system unreliability is computed by the equation:

L-RO= Y Quor+ N pup),
fel el

where L is the set of fault vectors ¢ for which the system has failed due to
Spares exhaustion as defined by the system fault tree. Fault vectors are
generated in sets by subroutine GNFLTVC in the CARE3 module. For each fault
vector, logic in GNFLTVC determines whether Q(tl¢e) or P*(tle) is computed and
summed into the unreliability. For the case of no user supplied system fault
tree, Q(tl) is computed for any ¢ for which no stage is failed by exhaustion;
otherwise P*(tl¢) is computed. This logic is consistent with the assumption
that the default system fault tree is an OR tree, i.e., the system fails if
dny stage fails by exhaustion. For the case of a user supplied system fault
tree, Q(tle) is computed only for those ¢ selected by GNFLTVC; P*(tle) is not
computed for any ¢. In this case, the sum of P* is computed in CARE3
directly from the minterm file for the system fault tree generated by FTREE.

Several problems with the GNFLTVC fault vector selection and generation
procedure for the sum of Q calculation where identified in Tasks 1 and 2:

e Q(tle) is not computed for all ge L,
* Q(tle) is computed for some ¢ ¢ T,
e Inefficient ¢ generation algorithm.

Review of the GNFLTVC code and test runs indicated that Q(tl¢) may not be
computed for some € for which the value of Q(ti¢) is a significant term in the
sum of Q calculation. In addition the user had no control over the selection
procedure. The algorithm for generating fault vectors in GNFLTVC generates
all fault vectors, although Q(tl¢) may be computed for only a small number of
vectors. The fault vector selection procedure was corrected with the Task 3
modifications and the generation algorithm was improved with the Task 4
changes.

13



3.1 FAULT VECTOR PROCESSING

In order to assure that all ¢ e L are processed and that the user may control
which Q(tle) are ignored as insignificant, two capabilities are required:

e ability to test whether or not a given £ e L
e ability to determine when Q(tle) is small.

The system minterm file generated by FTREE can be used to address the first
requirement. Let the vector '

=) x=1,2,. . NSTGES},
where t(x) = 0 or 1 be a system minterm; then a fault vector £ € L if
¢g(x)>n(x)-m(x) for all x for which t(x) =1, i.e., ¢ ncovers" 1. Thus ¢ e L
only if ¢ does not cover any minterm in the system minterm file.
Implementation of this test requires that the system minterms be stored in
core in a data structure designed to test efficiently whether a given fault

vector covers any minterm.

The second requirement can be addressed by choosing a different partition of
the fault vectors into sets for GNFLTVC.‘ Let the sets Ln be defined as

follows:

N
L = {g: 0s ews nlx), S t=n},n=012,.N

=1

MAX

where
N = number of stages in the system,

14



The Lp cover L in the sense that:

NM AX

L= |J wnuw

n=(

In addition the values of Q(t|¢) are decreasing over the Lpn in the sense that
the numbers:

Qq = max{Quif)! ﬁdl,nﬂ L}
are monotonically decreasing for n=2.

Thus, if GNFLTVC is modified to generate fault vectors in the sets
Ln, n=0,1, .., Nmax, it is possible to be sure that Q(t/¢) is computed for all
¢ e L. In addition it is possible to identify an ng for which Q(tl¢) is less
than a user specified tolerance for all ¢ € Ln where n=ng. Furthermore, the
fault vectors in Lp may be generated hy a simple algorithm that does not
generate any vectors outside Lp.

3.2 IMPLEMENTATION OF FAULT VECTOR PROCEDURE

Version 3 of the CARE III program was modified to implement the fault vector
selection procedure discussed in Section 3.2. The modified code, Version 4,
provides the user the option to use the Version 3 selection procedure or the
Version 4 selection procedure. (Variable IVSN in the NAMELIST set RNTIME may
be set to 3 or 4 (default).) As illustrated in Figure A.l1-5, the
unreliabiity for a SUBRUN is computed by subroutine RLSBRN in the CARE3
module. If the Version 3 selection procedure is requested, RLSBRN calls
NFLTVDP and GNFLTVC just as in the Version 3 code. If the Version 4
selection procedure is requested, RLSBRN calls NFLTVDP, then RDSPS to.load
the system minterm data into core, and Finally GNFLTS to compute the SUBRUN
unreliability.

15



Subroutine GNFLTS generates fault vectors in the sets Ln defined in Section
3.1, calls subroutine PRFLTS to compute Q(tl¢) or P*(tl¢)) for a fault vector
and monitors the change in size of the sum of -Q and sum of P* over Lns see
Figure A.1-9. The improved fault vector generation algorithm is coded
directly into subroutine GNFLTS. The processing of fault vectors is
terminated after set Ln if the change in the sum of Q for Ln is small
compared to the size of the sum of Q and the change in the sum of P* for Ln
is small compared to the size of the sum of P*. The logic for terminating
the generation of fault vectors is applied for set Lp only for n>2 and if
the user defined parameter LC did not affect the calculation of Q(tig) for any
£ € Lpn. (Parameter QPTRNC in NAMELIST set RNTIME is used to control the
termination of fault vector processing.) :

Subroutine PRFLTS determines whether ¢ ¢ L or ¢ ¢ L by calling subroutine
CKSPS which checks to see if ¢ covers any system fault tree minterm. The
minterm data was processed by RDSPS and stored in a data structure in arrays
ITRM and JTRM designed for efficient checking to determine if a fault vector
covers some minterm. If ¢ € L, PRFLTS calls UNRELQ to compute Q(tle), and if
¢ e L PRFLTS calls FPSTAR to compute P*(tle).

ORIGINAL PAGE IS
OF POOR QUALITY

16



4. SUBRUN ANALYSIS

In the CARE I[II program the system may be partitioned into SUBRUN's, which
consist of subsystems that .are independent in the sense that modules in
different subsystems are not critically coupled as defined by the critical

pairs trees. For the case of no user supplied system fault tree, the system o

unreliability is computed by the equation:

- Ro= > | N Que)+ > Pude)l,
N _lseLs e eL

- 8

where Lg is defined by the fault vector selection procedure implemented in
subroutine GNFLTVC in the CARE3 module (see Section 3.). L may be
interpreted as the set of fault vectors for SUBRUN-S for which no stage in
SUBRUN-S is failed by exhaustion. This corresponds to the natural
decomposition of the default system OR tree into an OR fault tree for each
SUBRUN-S.

For the case of a user supplied system fault tree, the system unreliability
is computed by the equation:

- R)= S_’[ S Q(dis)l + > Pdp)
3 _{seL‘ &L

where L is the set of fault vectors ¢ for which the system has failed due to
spares exhaustion as defined by the system fault tree and Ls is defined by
the fault vector selection procedure implemented in subroutine GNFLTVC in the
CARE3 module (see Section 3.). The sum of P* is computed in CARE3 directly
from the minterm file for the system fault tree generated by FTREE. Due to
the problems in the Version 3 fault vector selection procedure, it is not
possible to give an interpretation of Lg for this case. Furthermore, the
CARE III documentation does not specify any procedure for extracting a SUBRUN
fault tree from the system fault tree.

17



4.1 SYSTEM FAULT TREE PROCESSING

Suppose that the system fault . tree is an OR with respect ta the SUBRUN °
decomposition, i.e., the system fault tree is an OR over a set of subtrees,
each of which has stages in only one SUBRUN (see Figure 4.1-1). The subtree
corresponding to each SUBRUN may be used to define a fault tree for the
SUBRUN, and then Is is the set of fault vectors for SUBRUN-S for which the
SUBRUN has failed as defined by the SUBRUN fault tree. Thus the system fault
tree has a natural decomposition corresponding to the decomposition into
SUBRUN's and the CARE III estimate of the system unreliability is

conservative.

For the case of a system fault tree that is not an OR with respect to the
SUBRUN decomposition, there is no natural decomposition of the system fault
tree corresponding to the SUBRUN decomposition; therefore a heuristic
procedure is required. One heuristic procedure is to extract from the set of
minterms for the system fault tree the subset of minterms that include only
stages within a SUBRUN. This subset of minterms defines a fault tree for the
SUBRUN and Lg may be defined. With this construction, the system fault tree
is approximated by the OR of the derived SUBRUN fault trees.

This heuristic has the advantage that for the cases:

e a single SUBRUN and any system fault tree, or
e multiple SUBRUN's with the system fault tree an OR with respect to the

SUBRUN decomposition,

the natural decomposition of the system fault tree corresponding to the
SUBRUN's is obtained and the CARE III estimate of the system unreliability is
conservative. It has the disadvantage thaR in the general case, the estimate
of the system unreliability may be non-conservative since some failure events

are ignored.

18



?3J) 3ney
v-NNYans

9311 yneqj waishks Yo -1y a1nbiy

33i) yney
£-NNY8NS

$33.13 1Ney NNYENS OM] Aue 0) uowwod ase sabeys o

331) yney
Z-NNYENS

934§ )ney
L-NNYaNs

40

19



Implementation of the heuristic for extracting SUBRUN fault trees from the
system fault tree requires the capability of determining when a minterm
includes only stages within a SUBRUN. Let the vector

T = {t(x) : x=1,2,. ., NSTGES}

(x(x) = 0 or 1) be a system minterm; then T includes only stages in SUBRUN-S
only if

N dx)= 0.

x $§ SUBRUN-S

If T passes this test, then the minterm for the fault tree for SUBRUN-S is
defined by:

1s = {1(x) : xeSUBRUN-S}.
4.2 IMPLEMENTATION OF SYSTEM FAULT TREE PROCESSING

Version 3 of the CARE III program was modified to implement the heuristic for
extracting SUBRUN fault trees from the system fault tree. The modified code,
Version 4, uses the heuristic when the Version 4 fault vector selection
procedure is used. For the cases:

e a single SUBRUN and any system fault tree, or
e multiple SUBRUN's with the system fault tree an OR with respect to the
SUBRUN decomposition, :

the Version 4 code will provide a conservative estimate of the system
unreliability. For a general system tree the estimate of system
unreliability for multiple SUBRUN's may be non-conservative. When the
Version 3 fault selection procedure is used, the Version 4 heuristic is not
applied because the Version 3 fault selection procedure does use the SUBRUN
fault tree. In this case, the concerns about fault vector selection,
described in Section 3, apply to each SUBRUN calculation and the estimate of
system unreliability may be non-conservative for any system fault tree.

20



The extraction procedure described in Section 4.1 is implemented in
subroutine ROSPS, which is called by subroutine RLSBRN before the call to
GNFLTS; see Figure A.1-5.

2]






5. RELIABILITY MODEL

Complete verification of the CARE I[II model as applied to systems with no
transient faults is given in NASA CR-166096. In that analysis it is assumed
that within aggregate operational states all changes are due to fast coverage
transitions. Intuitively it can be argued that the dynamics within aggregate
states happen instantaneously and so the Macro model becomes a non-
homogeneous Markov process. More precisely, state probabilities are
expressed as renewal integrals which under the above assumptions are
approximated by the forward integral equations of a non-homogeneous Markov
process.

The justification of the macro model for systems susceptible to transient
faults requires a finer analysis since the previously used arguments do not

apply.

In Section 5.1, the complications introduced by transient faults are
discussed. An intermediate model is defined from which the CARE III model is
justified.

5.1 JUSTIFICATION OF THE MODEL

Analysis of the coverage model shows that a module with a non-transient fault
is very rapidly removed from the system (deleted from use or causes coverage
failure). A transient fault may also become benign (enters B); the fault
then poses no further threat and the module enters a fault free status where
it becomes exposed to new faults. A module can experience consecutive
transient faults until it either experiences a non-transient fault or a
transient fault causes module isolation or system failure.

At the macro level, the degradation of a system is defined by the vector
€ = (&(1), €(2)y...,8x),...) where ¢(x) measures the degradation in stage-x.
The comparison of non-transient and transient faults suggests that behavioral
differences be reflected in the definition of the vector & In CARE III,
é(x) is defined as the number of stage-x modules with a non-transient fault
plus the number with a detected transient fault.

23 mot AL NTENTIGNALLY BIARK

PRECEDTNG FAGE BLANK NUT pLMED



With this definition of the vector ¢ the assumption of fast dynamics within'
aggregate states is no longer valid. The Macro model is not yet justified.
To illustrate this, two identical systems with three modules and one fault
are analyzed. The Macro models corresponding to these systems are given in
Figure 5.1-1 for a non-transient fault, and in Figure 6.1-2 for a transient
fault. In these figures SFCM and DFCM represent fast transitions, whereas 1\
represents slow transitions. Transitions due to occurrence of a new fault,
slow transitions, occur only across aggregate states in the non-transient
case but can occur within aggregate states in the transient case, e.g.,
transition from fault-free state O to active state A, both in macro state

G(0).

An intermediate model 'ijs defined by introducing the vector y = (v(1),
v(2)yeeesr v(x)y...), where v(x) is the number of stage-x modules with latent
transient faults. The states in the intermediate model are defined as
aggregates of Micro model states, as a function of the operational status of
the system and the parameters ¢, v. Similar notation to that used for the
Macro model is used, e.g., G(¢ ) denotes an operational state and P(ue,v)
its probability.

Applying the structure of the intermediate model to the example, see Figure
5.1-3, it can be observed that only fast trapsitions occur within operational
states. The shortcoming of the Macro model when applied to systems with
transient faults is thus avoided.

5.2 MACRO MODEL RATE DERIVATION

The analysis in the last example may be extended to general systems, and it
follows that the intermediate model is approximately a non-homogeneous Markov
process. The probabilities for failure states in the Macro model, Q(ti¢), are
obtained as sums of renewal integrals, corresponding to the contribution of
each of the micro states. More concisely,

24



3 NPJ JUILSURL)-UON ~ [3POW 04 T[-T1°G 94nbyi4

(M4

iy & ©,

. WD
Y
WD4S W40
¥ / -
N

WY4S Y

(0)®
NOILSNVYHX3 < 3'da

</
SIYVdS ] <\

Ood
:

. (L)
= Gaa> «r(GTHd

8°dq

(@)



1ne4 Judisuel] - PO OB 2-1°S 3inbiy

(L4 (oM
t4F] e
140 ‘da C 440 . V m
v'v'da vy
Y Y WS
WS Y Y WD4S
(Yol
N
WoS 3'da 'da 8'da 'da 3 g
., . WIS W3S .
dQ’'da’da WS WS : \ \ wss| woss/
WD4S v'da 'da 4a ‘da
v o
(€)H Y WS W3S Y
(0)o

(o



1|ne4 1uadisuel] - [SPON Alelpawidu) g€-1°G by

9 ]
(T'LH M (8 F (z'oM v {0
(L'ZH : H :
v'v'da : .
. Y v . /wois
WIS Y Y ' WIS

Wo4S 3'da 'da : (9'da 'da 1) (s
wiis M W)4s - W
d0’da’da \ \ wass| woss/ -
WO4S - . .
' v'da ‘da da ‘da v o
(o%em : W3S WD4s Y-
(1’29 - (0o (1’00 : (0'0)®




au)= | |Pulouio +
(5.2-1)

+ 2 Pule- 1P wle- 10), D] du .
y

The first term in (5.2-1) corresponds to coverage failures due to latent
faults or to the interaction of a new transient fault with a latent fault.
The second term corresponds to double fault coverage failures due to the
interaction of a new nonftransient fault with a latent fault.

A conservative estimate of Q(t/¢) is obtained by allowing a larger set of
risks on the operational states that lead to the failure state F(¢). This is
attained by evaluating the probabilities and rates in (5.2-1) ignoring prior
coverage failures. This leads to multiple counting of coverage failures and
hence to conservative estimates of the reliability. Nevertheless, tight
bounds are expected since fault handling occurs at several orders of
magnitude faster than fault occurrence.

Under the above assumption, modules within a stage can interchange roles
within an operational state. Combinatorial techniques are then possible and
are used to analyze the status of modules within each stage as given in
Figure 5.2-1.

The formula for P*(tlf), the conservative estimate for operational state
probabilities, follows from simple combinatorial analyses and 1s given as a
product of binomial probabilities. The rates are derived using the principle
of inclusion and exclusion, following Riordan (1958).

The mathematical expressions of the functions used in the evaluation of
coverage failure probabilities are: '

28



€ “"faulty” modules n-¢ “non-faulty” modules

p latent non-transient v latent transient

qin-ukse

modules

€-p deleted

n-¢-v fault-free

Figure 5.2-1 Status of Modules Within Each Stage

29




¢
Qo= l K(u|f) du

(/]

Ko = P4 p 4O+
+ Y - 1M Pde- 1. 0
Yy

(x)
P#(w-_- ” ( %i—))[l“"(d-‘)l “Il[ddx)l atx)— &(x)

Hdn= [] rdx)

. t
exp [ - I A(u|xi) du} icPR(x)
[}

ngx,)=

t
i exp { - I , kop (ulxi)du} ieTR(x)

PR(x)

[}

set of non-transient stage-x faults,

TR(x)

set of transient stage-x faults.

pdd = a'd)+ AUO+ A*@do

hF(tle)
1- rfx)

RILERDS {e(x) + (nlx)- c(x»h,,.(axr)}
x

hodz )= D hglds)
iePR(x)

30



hde)= > hdx)
ieT A x)

Ado= D D AWy
y =z

h (4 ,x
p(x) DF” p? )
AL (x,xN= P[ px) ¢l ex)] b (£~ p) . [(p(x)— 1) ——————
p(zx) xx HL(dxp) HL(dx‘)
+ (n(x)— €&x) hDF(dx# x5)
p(x)
Al (x,y) = D Z P’p(x);tie(x) P[p(y)‘.df(y)] b&y(g- B H.d
et L x )
H(x) piy) 14
h, 4z .y )
DF*""p~p
. {p(y) _H-Etly_ + (- AMh o (dx P'yT)I
_ (@ W ¢x)— plx)
Pl px), (x| = | — [a(lix)] [l—a(dx)]
u(x)
E (x)
_ L »r
a(fx)= R

Hx ) = > H,dx)

iePR(x)
N x(q(x))
bx.x(g" W= (:(‘x)— €(xH p(x))
2
N_(q(x), q(y)
b (-p= ~L
ry (n(x)~ €(xH p(x)) (n(y)— &y p(y)

hppde,py) = 2 2 hpplls.y)

iePR(x) PRy

31



- N A Y
1ePR(x) TRy
Vieler= DD ATl g e

x y

tix)

Hi(tlxp) .
o z Plu(x); 4 €(x)] b'u(e(x)— p(x){ p(x)

wx=0 HL(tlx;)

A.(tlﬁ;(x, x)= A(tle)(n(x)— f(x))[ 1- HL(t|xT)

+ (n(x)} 8(x)— l)HL(ti xp)

o N Pl 4 0ol Plutyy 4 eyl
ptx) piy

AL (x )=\t yp) (i y)— e(_y){ 1 - H, ]y

Hyldxp)
+ (n(x— 8N H (t[:r)
HL(tlx ) L

. b”(e(x)— w(x), €(y)— piy) o | p(x)

where

Melyp= D Mely)
jeTRy)

A2@le- 10, 0= D \PelxiL- 100

X
for x=y
ex)—1

E Plu(x), ¢} &x)— 1]
Hx=0

Mt g €- 1, O = .\(tlx‘)(n(x)-— f(xH l)l 1- HL(tle)

Hzdx )

r
. bm(f(x)— px)— l{ H,_(dxp) u(x) + (n(x)— €(x)) HL(tl x)

for xzy

Me| = £~ 1), = Nt y ) n(y)— f(y)+l)[ 1- HL(tIyT)I SN Pl 4 oo Plucyk 4 - 1)

pix) pty
Hydx,)
. bx‘y(f(x)— p(x), €y — p(y) - l).[ HL(tlxp) px) + (nlx)- &x) HL(tIxT)

32



5.3 IMPLEMENTATION OF MODEL

In tasks 3 and 4, Version 3 of the CARE III program was modified to implement
the reliability model as defined in the previous section. The modified code,
CARE III, Version 4, correctly implements the CARE III sparing representation
defined by the NOP data and the case of transient faults. Additional code
changes were made to improve the computational efficiency of the CARE3 module
and to reduce the use of [/0 by the code.

Implementation of the complete CARE III reliability model required
modification of the input (CAREIN), coverage (COVRGE) and reliability (CARE3)
modules of CARE III, Version 3. Figures A.l1-1 to A.1-10 in Appendix A
illustrate the structure of the Version 3 and Version 4 code and show which
modules were modified or added. The overall structure of the CARE III
program was not changed in the modifications. The crucial changes for the
reliability model occur in subroutine CRTLPRS in module CAREIN, subroutine
SNGFLT in module COVRGE and subroutines NFLTVDP, GNFLTVC and SUMMAT in module
CARE3; these are discussed below.

5.3.1 Calculation of the Critical Pairs Counts (CRTLPRS)

In Version 3, the critical pairs minterm data for a SUBRUN is processed and
the byy function is computed in subroutine CRTLPRS in the CAREIN module. In
Version 4, the calculation of the bxy function is deferred to the CARE3
module and only the critical pairs minterm data for a SUBRUN is processed in
CRTLPRS (see Figure A.1-1). In Version 4, CRTLPRS is completely new and
subroutines GNIQX, RDCPS and GNKXY are new code. The user's NOP data is
processed by GNIQX and arrays IQXNOP and KQXNOP are established to give q(x)
as a function of €(x)-u(x). The minterm data is read by RDCPS and critical
pair counts are accumulated in array KNT by subroutine GNKXY. The KNT array
contains the following data:

KNT (i(x), ¥, q(y)) = number of x,y critical pairs that
involve module i(x) in stage-x and
some stage-y module given q(y) in-
use stage-y modules.

33



The data stored in the I[QXNOP, KQXNOP and KNT arrays is sufficient'for the
calculation of the byy function performed in the CARE3 module. The critical
pair counts Nyx(q(x)) and ny(q(x),q(y)) can be easily obtained from the KNT

array.
5.3.2 Calculation of the Counts Nyxx and Ny,

The evaluation of the byxy function requires the calculation of the counts
Mxx(q(x)) and Nxy(q(x),a(y)). Since these counts depend only on the critical
pair counts (computed in the CAREIN module), subroutine NFLTVDP in the CARE3
module was modified to call subroutine GNCPS to do the calculation (see
Figure A.1-6). For each possible pair of stages x,y, GNCPS checks to see if
X,y are critically coupied by checking the KNT array; x,y are critically
paired only if

nix)
S KNT(x) y, niy)> 0.

ix=1

Array [JSTGIN is used to flag whether or not x,y are critically coupled.

When stages x,y are critically paired, the counts Nyx(q(x)) and
Nx,y(a(x),q(y)) are computed using subroutines GNNXX and GNNXY and stored in

arrays NXX and NXY:

qix)
N KNT(ix),x,q(x)

wx) =1

[ I W

Nx.x(q(x)) =

Q¢ x)
N (qagim= Y KNTG(x),5q()

xi=1

34



An improved version of the by, data structure and [/0 scheme is used to store
the NXX and NXY arrays.

5.3.3 Calculation of bx,y Function

As discussed in Section 5.2, the byy function depends only on £-u and so it
may be computed before the reliability model is solved. Subroutine NFLTVDP
in module CARE3 was modified to call subroutine GNBPS to do the calculation
(see Figure A.1-6). For each possible pair of stages x,y, GNBPS computes the
bxy function only if x,y are criticaly coupled as noted in the IJSTGIN array.
When computation is indicated, the bx,y function is computed by subroutines
GNBXX and GNBXY and stored in arrays BXX and BXY: '

NXX(g(x))

BXX(lx— plx) = ——— >
Vix)— €x)+ p(x)

NXY(q(x), g(y)
(n(x)— L0+ plxnin(y)— €0 yH+ piy)

BXY (€(x)— p(x), &l y}— piy) =

The values of ¢(x) and ¢(y) are defined by ¢ which was selected by GNFLTVC in
Version 3 and GNFLTS in Version 4; q(x) and q(y) are defined by &(x)-u(x) and
e(y)-u(y) using the IQXNOP and KQXNOP arrays; and u(x) and u(y) are in the
range, Osu(x)=eé(x), O=uly)=e(y).

An improved version of the byy data structure and /0 scheme is used to store
the BXX and BXY arrays.

5.3.4 Calculation of Q(tl¢)

The calculation of Q(tl¢) is computed by subroutines UNRELQ and FINTGRT in the
CARE3 modute:

(L

Quie) = ] K(d&)dr.

a9

35



Subroutines UNRELQ and FINTGRT were not modified in Version 4. The function
K(tl¢) is computed by subroutine SUMMAT:

KAO= PO o)+ PUDAWD+ > Pt~ 1A 2WEo)
.

where the first term represents single fault failures, the second term
represents double fault failures with no new fault, and the third term
represents double fault failures due to a new fault. In Version 3, these
terms are computed in subroutines FAPC, FAC and FCYJ, respectively, and FAC
and FAYJ make use of the symmetry in x,y of the byy function.

The order of calculation used in FAC and FCYJ introduces several
inefficiencies into the solution of the reliability model: excessive [/0 due
to multiple passes through the by, data, recalculation of terms which are
independent of ¢ (they are only functions of time) and excessive logical
tests in the inner loops of the calculation. Subroutine GNBPS in module
CARE3 was modified to call subroutine GNTXX and GNTXY to evaluate all terms
in the Kti¢) calculation that depend only on time before the reliability
model was solved see (Figure A.1-8). Subroutine SUMMAT and the by, data
structure and I/0 scheme were completely modified to eliminate the excessive
use of [/0 and logical tests. (If the number of pairs of critically coupled
stages in the user's model does not exceed 20, then all I/0 operations
involving the byy data is avoided.) The Version 3 subroutines, FAC, FCYJ,
FBCRTL and FDSCRTL are replaced in Version 4 by subroutines GNFXX, FBLXX,
FB2XX, FBLXY and FB2XY (see Figure A.1-10).

As discussed in Section 5.1, the transient fault model introduces an extended
interpretation of the fault vector ¢ In Version 4, the logic in subroutines
GNFLTS and SUMMAT was extended to properly include this revised
interpretation of fault vectors.

36



5.3.5 Method of Moments

The calculation of K(ti¢) requires the evaluation of several  convolution
integrals:

t
A= J PZ(I) P1 (t— ) dr,

O

where Pi(t) is a measure of the rate at which a certain class of faults
occurs and Py(t), oﬁe of the coverage output functions, is a function of the
interval t between that occurrence and the entry of the fault into a
particular coverage state. The numerical convolution procedure implemented
in the CARE III module uses the method of moments. The calculation is based
on two assumptions: P;(t) is a much more slowly varying function of time
than Py(t); and Pyt) decays rapidlvy to zero. The first assumption is
consistent with the CARE IIl assumption that coverage rates are much higher
than module failure rates. However, the second assumption was not valid for
the coverage output function Ppp. To correct this problem, subroutines
SNGFLT and MSNGFN in the COVRGE module were modified to provide the intensity
por dS an output instead of P,.. The CARE3 module was appropriately modified
to compute hper from ppe instead of Pp.. The overall result of these changes

is a more accurate evaluation of hppr.

37






6. TEST STRESSING

As part of the validation task of CARE III, the reliability of hypothetical
systems was evaluated. The answers obtained compared favorably with analytic
results. As part of the test stressing, two fault-tolerant systems were
evaluated using CARE III; Section 6.1 describes the FTMP analysis, and
Section 6.2 the SIFT problem. Although FTMP presented a complex architecture
for representation, CARE IIIl offered sufficient flexibility to approximate
the system. SIFT, although significantly simpler than FTMP, illustrated that
CARE III is limited to simplex, duplex, and triplex systems; pentaplex (3-
out-of-5) voters cannot be represented well.

6.1 FTMP

The FTMP system (NASA CR-166071,72,73) consists of ten LRU's (line
replaceable units) and connecting buses. Each LRU contains a processor, a
clock generator, a power supply, a memcry (slave region) and two bus guardian
units (BGU). For the reliability analysis, the BGU's may be lumped in with
the processor; their failure rates shculd be added together. Similarly the
memory includes the real time clock, system control register and the [/0
port. There are four different types of buses: poll (P), receive (R),
transmit (T) and clock (C). There are 5 of each type of bus.

Fault-tolerance is incorporated by triplex voting with majority rule (except
for clocks). No single-fault coverage failures should occur. The system is
jnitially composed of three processor triads with one spare processor, two
memory triads with four memories as spares, and one clock quadruplex with six
spare clocks. The modules in a triplex (quad for clocks) are rotated. At
any given time the processors in a triplex may be from any of the LRU's--
similarly for the memories and clocks.

The P, R and T buses each form a trip ex with two spares. The C bus forms a
quad with one spare. If no inter-LRU dependence existed, the minimum number
of modules needed for each stage are: processor (5), memory (5), clock (3),
P, R and T bus (2 each), C bus (3).

T CALE Y R VO 39 sess 3T puntiion sy BaNK

BT L R A SR I S A R A Cabfaoll L] —



The failure rates used in the analyses are:

processor (plus 2 BGU's) 2.2 x 10~4/hr
memory 2.0 x 10-4/hr
clock 1.0 x 10-5/hr
power supply 1.0 x 10-4/hr
P, R, T and C bus 1.0 x 10-5/hr

Dependence arises with FTMP in that if a processor within an LRU fails, no
other modules are affected. If a clock or power supply fails, all the
modules within the LRU may function improperly. When a clock or power supply
are identified as faulty, the entire LRU is deleted from the system. A
faulty slave region may not affect the operation of the rest of the LRU:
however, if identified as faulty, it will cause the entire LRU to be deleted.
Dependence affects the reliability of the system in two ways, in the
Computation of spares exhaustion failuyre and of coverage failure,

When assessing spares exhaustion, dependence complicates the relationship
between the number of failed modules and the number of operational modules
remaining. For example, if two processors fail and then two memories fail
(under perfect coverage), the number of operational processors left can be
six, seven or eight. This depends on whether the failed processors and
memories are from the same LRU (eight processors left), different LRU's (six
left), or one LRU with a processor and then a memory failure, one LRU with a
processor failure and one LRU with a memory failure (seven left).

CARE III does not allow for module interdependency. An added complication is
the functional numbering in CARE III, as opposed to physical numbering.
Processor 1 denotes the pProcessor that currently is performing function 1:
this in FTMP would be functioning in the first triad. Processor 1 could be
from any LRU. In particular, processor 1 and memory 1 will, most of the
time, be from separate LRU's. A discussion of functional numbering is
provided in Section 3.0 of the BCS Final Report.

As our first-cut model for Spares exhaustion, all the modules within an LRU
are lumped together to form a single stage. The combined stage failure rate

40



is the sum of the module failure rates. Perfect coverage is assumed. This
model Tleads to a conservative eva'uation (overestimate) of exhaustion
failure. Figure 6.1-1 provides the ccntrol information for this FTMP model.
The estimate obtained for the probability of system exhaustion failure is
P*SUM = 1.45 x 10-11,

The unreliability obtained satisfies our requirements (P significantly less
than 10-9 for a 10 hour flight); no further analysis of exhaustion failure is
required. [f this conservative procedure did not provide satisfactory
results, a more detailed model could be evaluated. One could Tet each module
be a stage, and thus represent in detail what combinations of module failures
cause exhaustion failure. The problem with such a representation is that the
system fault tree becomes quite complex and there is an appfeciable chance of
user input error. This model still assumes perfect coverage since one cannot
input system sparing rules and the success configuration information (NOP).
For the FTMP analysis this more detailed modeling was not necessary.

Initial information on FTMP was obtained from NASA CR-166071, CR-166072 and
CR-166073. Additional information and assistance on FTMP was provided by Mr.
C. Liciega from NASA-Langley. The failure rate values were based on those
used in the Draper reliability analyses. The coverage parameters were based
on the FTMP fault injection study, CR-166073, and a description of how the
system operates. |

Exponential transition rates were used for the coverage analyses. The a(t)
transition can be taken as exponential, since the transition of a faulty
module from a latent state to an error generating state can be considered
random in time. The detection rate, 3§(t), is certainly based on how often
self-tests are run. There are 37 self-test programs for the processor, clock
generator and bus. A new program is run every 320 milliseconds. Once a
module is detected as faulty and the error latches are set, another clocking
cycle is required, 320 milliseconds, before the module can be deleted and
replaced by a spare. Each test program does not detect solely a unique type
of fault. Certain types of faults will be detected by many of the self-
tests. A uniform distribution does nrot appear to describe this operation
well. An exponential distribution was used, such that five percent of the

41



$FLTTYP DEL (1) = 1.0ES,
RHO (1) = 0.0,
C (1) = 1.0,
IDELF(1
IRHOF (1)

’

1,

~

IEPSF(1)

CVPRNT

$STAGES NSTGES

N(1)
M(1)

10,

1,
.TRUE.$
= 5,

z LRU

N(2)
M(2)
N(3)
M(3)
N(4)
M(4)
N(5)
M(5)
IRLPCD

s : P Bus
: R Bus
! T Bus

T L VR T (R TR TR VR

} C Bus

= 5.3t -4, — LRU Failure Rate

RLM (

RLM(

RLM

RLM

$RNTIME FT

[TBASE =

SYSFLG =

CPLFLG =

TMP RUN WITH
566

012345

.TRUE.,
.FALSE.$
F LRU TREATED AS A STAGE
1
6

Input File for Obtaining Bound on Exhaustion

Figure 6.1-1
Failure with Dependence

42



probability was to the right of 38 x .320 milliseconds. With this.
distribution, "more of the action" happens early, which represents the
overlap in the self-test programs. Furthermore, the five percent tajil to the
right of the theoretical maximum detection time should lead to a slightly

conservative answer.

The parameter for the exponential distribution is the inverse of the mean.
Using Table 7, CR-166073, a was taken as 1/(mean time to detect error - 160
milliseconds), converted to hours. The detection time was adjusted by 160
milliseconds since, On the average, there will be that much delay between
when an error is propagated and when an arror f1ag_is set.

The e(t) transition is from an active error producing state, Ag, to either 3
detected, identified and reconfigured c<tate, Dp, OF to coverage failure F.
The length of time in the state Ag is important for assessing double-fault
coverage failures; only the transition to Op need be considered. The mean
time for this transition was taken 1S the sum of the mean times for
identification and for reconf iguration, as given in Table 7, CR-166073, plus
160 milliseconds. The 160 millisecond adjustment allows for the average time
between initiation of error propagation and the setting of error flags.
Using this mean time, converted to hours, provides the exponential parameter

e for the coverage model.

Coverage failure is also affected by dependence. For FTMP no single-fault
failures in theory can occur; double-fault failure must address dependence.
Consider three processors in a tripiex (Figure 6.1-2). Any two faulty
processors will defeat the majority voter; thus all pairs of processors in
the triad are critically paired. 3ut consider a clock failure in an
associated LRU. This causes faulty processor operation within the LRU.
Hence the clock js critically coupled to the other two Pprocessors.
Similarly, the power supply and memory are critically coupled with the
processors (and clocks). In order to represent this dependence, One def ines
an equivalence class for each LRU. A double-fault failure may occur if there
is one fault in two of the equivalence classes. The control file for the LRU
critical pair fault tree is given in Figure 6.1-3. The answer obtained by
this representation is conservative, since some module pairs are incorrectly

43



Processor Triad (P, Pi, P)

LRU;

PSi

Two Faulty
Processors

G Faulty + P, Faulty
+
Pj or P¢ Faulty

G Faulty » p; Faulty
Mk or Ck

or + Pg Faulty
PSk Faulty

etc.

LRU,

v

LRUg

M
Ck
PSk

Processor
Coverage
Failure

Processor
Coverage
Failure

Processor
Coverage
Failure
(with no
direct
processor
failures)

Figure 6.1-2 Dependence Effecton Coverage

44




$FLTTYP DEL (1) = 8.87E2,
RHO (1

) = 1.91E4,
¢ (1) = 1.0,
EPS (1) = 1.05E4,
DEL (2) = 0.0,
RHO (2) = 8.39E3,
EPS (2) = 1.12€4,
DEL (3) = 8.87E2,
RHO (3) = 1.0ES,
EPS (3) = 1.13E4,
DEL (3) - 8.87E2,
RHO (4) = 2.05E3,
EPS (4) = 7.8E3, .
DEL (5) = 8.87E2,
RHO (5) = 1.OES,
EPS (5) = 1.13€4,
NFTYPS = §,
CVPRNT = _TRUE.$

§STAGES NSTGES = 8,

N(1) = 10, ’ Processor
M(1) = 5,
N(2) = 10, ; Memory
M(2) = 5,
N(3) = 10, : Clock
M(3) = 3,
N(4) = 10, Power Supp]l
M) -5, | PPy
N(5) = 5, tp Bus
M(5) = 3,
N(6) = 5, ] R Bus
M(6) = 2,
N(7) = 5, ! T Bus
M7) = 2,
N(8) = 5, z C Bus
M(8) = 2,
NOP(1,1) = 9,
NOP(2.1) = 6.,
NOP(1.2) = 6,
NOP(1.3) = 9,
NOP(2.3) = 6.
NOP(1,4) = 9,
NOP(2.4) = 6,
NOP(1.5) = 4.
NOP(1,6) = 3,
NOP(1.7) = 3.
NOP(1,8) = 3,
IRLPCD = 1%

Figure 6.1-3 Input File for Estimate of Coverage
Failure, 1 Subrun

45



$FLTCAT JTYP ;1,1) =1,
JTYP (1,2)°="2,
JIYP (1,3) = 3,
JTYP (1,4) = 5,
JTYP (1,5) = 4,
JIYP (1,6) = 4,
JTYp (1,7) = 4,
JTyp (1,8) = 4,
RLIM  (1,1) = 2.2E-4,
RLM (1,2) = 2 OE-4,
RLM(1,3) = 1.0E-5,
RLM (1,4) = 1.0E-4,
RLM (1,5) = 1.0E-5,
RLM (1,6) = 1.0E-5,
RLM (1,7) = 1.0E-5,
RLM (1,8) = 1.0E-5%

$RNTIME FT = 10.0,
[TBASE = I,
SYSFLG = .TRUE.,

CPLFLG = .TRUE.§

FTMP MODEL IV

1899

9012345678

CP TREE FOR MODEL IV

1 60 61 78

1110

2 11 20

321 30

4 31 40

5 41 45

6 46 50

7 51 55

8 56 60

61 0 1 11 21 31

620 2 12 22 32

630 3 13 23 33

64 2 61 62 63

65 0 4 14 24 34

66 0 5 15 25 35

67 0 6 16 26 36

68 2 65 66 67

69 0 7 27 37

70 0 8 28 38

7109 29 39

72 2 69 70 71

73 2 21 22 23 24

74 2 41 42 43

75 2 46 47 48

76 2 51 52 53

77 2 56 57 58

78 0 64 68 72 73 74 75 76 77

Figure 6.1-3 (Continued)

46



represented as being critically coupled (e.g., processor of LRU 1 and memory
of LRU 2). This equivalence class representation, however, makes for an easy
representation of the LRU dependence effect of processor and memory triads
simultaneously. Using a single critical pair tree, the probability of a
coverage failure obtained is Q SUM = 6.039 x 10-9. Note that the upper bound
for exhaustion failure, 1.45 x 10-11, affects only the third significant
digit. The problem was rerun using two critical pair trees (two subruns)
with processors, memories and power supplies in the first subrun and buses in
the second (Figure 6.1-4). This reduces the CPU run time and drastically
reduces the amount of output. The answer obtained differed only at the
seventh significant digit. In most of the detailed analyses, subruns were
used, providing highly accurate results at a much Jlower cost. The
restrictions for the use of subruns are given in Section 4.0.

6.2 SIFT

SIFT operates as a one-stage system which consists of a pentaplex of modules,
plus spares. Within the pentaplex, fauit tolerance is based on three out of
five voting. Coexisting faults on three of the modules within the pentaplex
are necessary to cause coverage failure of the system. This means that
critical triplets, as opposed to critical pairs, need to be considered when
assessing the probability of coverage failure.

CARE III has been suggested as an evaluation tool for such systems by
disregarding failure probabilities unless enough faults are present. Q(t®),
the probability of coverage failure when 2 faults have occurred, is evaluated
only when 2=LC, where LC is an input parameter. For a pentaplex, LC is set
equal to 3.

If transient faults are possible, then literal triplets can occur even when
<2, (% counts transients only when they cause the module to be isolated).
The use of the LC parameter will lead in this case to very optimistic
results.

[f only non-transient faults are possible, the use of LC=3 gives correct
results only in the case of a pentaplex with no spares. [f the system

47



TMP MODEL [V
99
12345678
TREE FOR MODEL IV - SUBRUN 1
0 61 74

10

20

30

40

11121 31
2 12 22 32
31323 33
61 62 63

4 14 24 34
515 25 35
6 16 26 36
65 66 67

7 27 37

8 28 38

9 29 39

69 70 71

21 22 23 24
64 68 72 73
CP TREE FOR MODEL IV - SUBRUN 2
41 60 74 78

5 41 45

6 46 50

7 51 55

8 56 60

74 2 41 42 43

75 2 46 47 48

76 2 51 52 53

77 2 56 57 58

78 0 74 75 76 77

W N~ B

[oa)
(=}
QONMNOOOMNOCOOMNOOOF

Figure 6.1-4 Critical Pair Tree for Two Subruns

48



consists of one or more pentaplexes and spares, the reliability estimate
given by CARE III is extremely conservative.

Three events contribute to Q(t3) in CARE III:

(1) three latent faults in a pentaplex;
(ii) three latent faults; two of these in a pentaplex;
(iii) two latent faults in a pentaplex, one deleted module.

Of the three cases, only the first corresponds to a true coverage failure in
a pentaplex. The last two cases are included in the evaluation of Q(t3)
since CARE [II is based on a critical pair type architecture. The first two
events are of the same order, since both cases depend on three latent faults.
For the highly reliable systems being considered, fault handling is several
orders of magnitude faster than fault occurrence and the third event is
correspondingly considerably greater tran the first two; it will be the
dominating term in the evaluation of Q(t3). The corresponding coverage
failure estimate will then be unacceptably conservative.

As an example, consider a system consisting of one pentaplex and one spare.
Modules are susceptible to a permanent fault which occurs at constant rate A
and detection occurs at constant rate 8. [If § >> X then

2[ -6t

TRUE UNRELIABILITY l-e

i
(8]
P
o 1>
SN —

2 -6\t -5at
CARE III UNRELIABILITY = 4 (l ) 1-5e -6e
5 .

!

In particular if A=5x10-4; §=100 and t=1. the respective values are 3.7x10-13
and 7.4x10-1%,

49






7. REFERENCES

Bryant, L. A. and J. J. Stiffler (1982), CARE III Phase II Report Maintenance
Manual, NASA CR-165863.

Riordan, J. (1958), An_Introduction to Combinatorial Analysis, John Wiley &

Sons, New York.

Rose, D. M., R. E. Altschul, J. W. Manke, and D. L. Nelson (1983), Review and
Verification of CARE III Mathematical Model and Code: Interim Report , NASA
CR-166096. '

Rose, D. M., R. E. Altschul, J. W. Manke, and D. L. Nelson (1984), Trials of
the CARE III Model: Final Report (Draf:), NASA Contract NAS1-16900.

Smith, T. B. and J. H. Lala (1983), The Development and Evaluation of a Fault
Tolerant Multi Processor (FTMP) Computar.

Vol. 1: FTMP Principles of Operation, NASA CR-166071.

Vol. 2: FTMP Software, NASA CR-166072.

Vol. 3: FTMP Test and Evaluation, NASA CR-166073.

Stiffler, J. J., and L. A. Bryant (1982), CARE III Phase Il - Mathematical
Description, NASA CR-3566.

51
meE 50 NTENTIONALLY BLANK






APPENDIX A

This appendix documents the modifications made to CARE III, Version 3, in
Tasks 3 and 4; the modified program is referred to as CARE III, Version 4.
The first section describes the changes in terms of the "call trees" of the
principal modules of the program. The second section consists of the "design
sheets" prepared for all the modified or new subroutines in Version 4.

A.1 CALL TREE SPECIFICATIONS

In this section an overview of the differences between the Version 3 and the
Version 4 code is presented in terms of the "call trees" of the principal
modules of the programQ In Figures A.l-1 to A.1-10, the modified or new
subroutines in Version 4 are indicated by boldface type. The figures show
that the overall structure of the CARE III program was not changed in the
Task 3 and 4 modifications.

A.2 DESIGN SPECIFICATIONS

The design of each of the modified or new subroutines in the Version 4 code
is summarized by a "design sheet" presented in this section. These design
sheets were prepared as the first step in the coding of the Version 4
changes. They are an overview of tne subroutines; not all computational
details are included. However, they do indicate the overall sequence of
computations and the data needed for and generated by each step in the
subroutine. The design sheets are presented in the following order:

o CAREIN;
- Figures A.2-1 to A.2-5

° COVRGE: Markov model;
- Figures A.2-6 to A.2-13

° CARE3: Main control and computation subroutines;
- Figures A.2-14 to A.2-217 -

53 PAGE S 2 i
PRECEDING PAGE BLANK NOT FILMED Sh 22 INTENTIGNALLY Bl



CARE3: Calculation of NXX and NXY data;
- Figures A.2-22 to A.2-24

CARE3: Calculation of BXX and BXY data;
- Figures A.2-25 to A.2-29

CARE3: Calculation of K(tig);
- Figures A.2-30 to A.2-35

54



VERSION-3 VERSION-4

CAREIN CAREIN

- BUFBLK | BUFBLK

L FTREE | FTREE

I CRTLPRS — CRTLPRS
GNIQX
RDCPS

L GNKXY
L SUBRUN L SUBRUN
L SPLIT | |__ SPLIT
— SPLIT | — SPLIT
L— VLDNML — VLDNML

Figure A.1-1 CAREIN Call Tree

{Note: Boldface on this and following figures indicates routines that
have been added or modified ]

55



VERSION-3
COVRGE

|— BUFBLK

L SNGFLT

L DBLFLT

L PRNTCVG

VERSION-4

COVRGE

L BUFBLK

L SNGFLT

L MSNGFN

| MSNGMT

L DBLFLT

- MDBLFN

| — MDBLMT

L PRNTCVG

Figure A.1-2 COVRGE Call Tree

56



VERSION-3 VERSION-4

COVRGE COVRGE

I_ SNGFLT -~ MSNGFN

| COMPFUN
thSNGL
SFG12
| SUMARS
| VSTPINT
| PREVNRC
L vitrec
L envunt
| VOLTERA
L envunT
| CVLTAR
L voLtera
L envunt

L — GENMNTS

- TMAXSNG

L BUFBLK

| wsGear

L__ msnGrFo

- MSNGMT
I_ HSGEAR

| msnGmo

Figure A.1-3 Single Fault Call Tree

57



VERSION-3 VERSION-4
COVRGE COVRGE
L oBLFLT | mpBLFN
| compFUN L wsGear
FCDBL L mpsiro
FDDBL | moBLMT
FFDBL L wsGear
| SUMARS | mpsumo
| PREVNRC
L vLTREC
L envunT
| VOLTERA
L envunT
| GENMINTS
| TMAXDBL
L BUFBLK

Figure A.1-4 Double Fault Call Tree

58



VERSION-3 VERSION-4

CARE3 CARE3
— RLSBRN — RLSBRN
NFLTVDP __ NFLTVDP
GNFLTVC L. GNFLTVC
| RDSPS
L GNFLTS
— FNCK L FNCK
L. BUFBLK L BUFBLK

Figure A.1-5 CARE3 Call Tree

59



VERSION-3

NFLTVDP

CAXLAT
L FHsesT
CRXFF
L FrxirF
FCLAM
FHSFST
PREEXP
| FGST
| FHSFST
| FHDFST
| FNCK
| PRNTGH

- BUFBLK

L— BUFFOUT

VERSION-4

NFLTVDP

GNCPS
GNNXX
GNNXY
BUFDAT

GNBPS

1 GNBXX

L GNBXY

L GNTXX

L GNTXY

L BUFDAT

L FNCK

L BUFBLK

Figure A.1-6 NFLTVDP Call Tree

60



GNCPS

L GNNXX

L GNNXY

\— BUFDAT

Figure A.1-7 GNCPS Call Tree

61



GNBPS

L GNBXX

L GNBXY

- GNTXX

L FCLAM

| FHSFST

| FHDFST

L FLAM

L FRXIFF

L PREEXP
— GNTXY

L_ FHOFST

L BUFDAT

Figure A.1-8 GNBPS Call Tree

62



VERSION-3 FAULT VECTOR VERSION-4 FAULT VECTOR

SELECTION PROCEDURE SELECTION PROCEDURE
RDSPS
GNFLTVC GNFLTS
— FPSTAR FPSTAR
— ARZERO , PRFLTS
— FPSTAR
— CKSPS
— GNBXY [— GNBXY
— UNRELQ — UNRELQ
FINTGRT : FINTGRT
SUMMAT SUMMAT

Figure A.1-9 GNFLTVC Call Tree

63



VERSION-3 VERSION-4

SUMMAT SUMMAT

— BUFFIN — GNFXX
— FAPC FPMUX
— FLAM FPSTAR
— FPSTAR —~ FB1XX
— FB2XX
— FAC — FBIXY
L FBCRTL — FB2XY
BXYC — FPSTAR
FPMUX — BUFDAT
— FCY
L FDSCRTL
BXYC
FPMUX
— FPSTREC

Figure A.1-10 SUMMAT Call Tree

64



CAREIN

Read & check User’s Input Data

Process System Fault Tree «— FTREE

—® Loop over Critical Pairs Fault Trees

Process Critical Pairs Fault Tree <4— FTREE
S
Process MINTERM data <— CRTLPRS

Buffer out COVERAGE data (REC, CREC2, CREC3, CREC4)
Buffer out RELIABILITY data (REC, RREC2)

Generate SUBRUN data <4— SUBRUN & SPLIT

—® Loop over SUBRUN's

Buffer out SUBRUN data (RREC3, RREC4)

>

Figure A.2-1 CAREIN Design Sheet



CRTLPRS

Position I/O Units

—_» Loop over MINTERM subfiles

Read PRBMT, MNTRMV

Read NUNT

Process: ICSTG, KFSTG, LSTSTG, HSTG, IUSTG

Process NOP data <+——— GNIQX

Read MINTERM data <4—— ROCPS (EOFFLG)

Write KNT data

N

Figure A.2-2 CRTLPRS Design Sheet

66



GNIQX

— Loop over stages (x) in SUBRUN

Initialize IQXNOP and KQXNOP arrays for stage
IF  default NOP data, THEN

Loop over kqy (= 1,10) until g, = my

IQXNOP (kgx, X) = QlkgyX) = Ne-kgyt 1

\ 4
ELSE user defined NOP data

—» Loop over kqy (= 1,5) until NOP(kqy,x) = 0

kgm = kagx

IQXNOP (kgeX) = qkgux) = NOP (Kqx,X)

>
IQXNOP (Kym,x) = qlkgm.x) = My

Y
ENDIF

— Loop over £,-u, (=0,9)
Compute g, defined by n-,+ .

KQXNOP (£,-py, X) = kqx

Ly

—»

Figure A.2-3 GNIQX Design Sheet

67



RDCPS (EOFFLG)

Initialize KNT array

—p LOOp over MINTERMS
Read MINTERM

Compute: x, mx;.jx: y, My, jy

For x <y compute KNT (jy, y, kqy) <+———— GNKXY (x, j,, my, y.jy, my)
For x 2y compute KNT (j,, x, kqy) +———— GNKXY (y, jy, my, x, jx, my)
—»

IF  end of MINTERM file, THEN
EOFFLG = .T.

ELSE

Figure A.2-4 RDCPS Design Sheet

68



GNKXY (X, jx My ¥s iy My)

IF x=y, THEN
__» Loop over gy (kqx= 1,10) until g, <my or g,<my

sum: KNT (o X, Kgx) = KNT (. X, kqu) + 1

L
v
ELSE x=zy
—» Loopover qy(kqy = 1,10) untl gy,<my

KNT (jy, ¥, kgy) + 1

Sum: KNT (jx ¥, kqy)

v

ENDIF

Figure A.2-5 GNKXY Design Sheet

69



MSNGFN

Obtain parameters for fault type

Initialize states and coefficient matrix

Initialize output coverage functions

r.p Loop over time steps (t=IT)

Integrate system state one time step <4—— HSGEAR, MSNGFD
Compute output coverage functions |

Check for steady state

Figure A.2-6 MSNGFN Design Sheet

MSNGFD

Compute time derivatives of states

Figure A.2-7 MSNGFD Design Sheet

70



MSNGMT
Initialize moments fort=0(1T=1)

— Loop over time steps (IT = 2, ITSTPS)

I igh t
ntegrate weighted output coverage HSGEAR, MSNGMD
functions one reliability time step

Store moments

Figure A.2-8 MSNGMT Design Sheet

MSNGMD (t)
Locate tin time array for output coverage functions

Compute weighted output coverage functions

Figure A.2-9 MSNGMD Design Sheet

71



MDBLFN

Obtain parameters for fault type

Initialize states and coefficient matrix

Initialize output coverage functions

—» Loop over time steps (t = IT)
Integrate system state one time step <4——— HSGEAR, MDBLFD
Compute output coverage functions

Check for steady state

Figure A.2-10 MDBLFN Design Sheet

MOSBLFD

Compute time derivatives of states

Figure A.2-11 MDBLFD Design Sheet

72



MDBLMT
Initialize moments fort=0(IT=1)

—» Loop over time steps (IT = 2, ITSTPS)

Int te ighted output § :
ntegrate weig output coverage HSGEAR, MDBLMD

functions one reliability time step

Store moments

Figure A.2-12 MDBLMT Design Sheet

MDBLMD (t)
Locate tin time array for output coverage functions

Compute weighted output coverage functions

Figure A.2-13 MDBLMD Design Sheet

/3



CARE3

Buffer in CVRGAR array

Buffer in TITLE array

Buffer in REC1

Buffer in REC2

Compute KWT from system MINTERM file

— » Loop over SUBRUNS

Buffer in REC3

Buffer in REC4

Display

Compute Unreliability per Subrun <4—— RLSBRN

Compute SRNPSTF if a system fault tree

S

Compute P* if a system fault tree

Write SUMMARY

Figure A.2-14 CARE3 Design Sheet

74



RLSBRN

Convert failure rates to correct time base

Create TRNSFC array

Compute non-£ dependent functions <4—— NFLTVDP

IF Version 3 fault generation procedure, THEN

l Generate fault vectors <+——— GNFLTVC

ELSE Version 4 fault generation procedure
Extract SUBRUN fault tree <4—— RDSPS

Generate fault vectors <4—— GNFLTS

ENDIF

Figure A.2-15 RLSBRN Design Sheet



NFLTVDP

Compute GFLD
Buffer in KNT data

IF Critical Pairs for SUBRUN, THEN

Process SUBRUN for which Critical Pairs are defined

ELSE

Process SUBRUN for which no Critical Pairs are defined

ENDIF
Generate NXX and NXY data +—— GNCPS
Generate BXX and BXY data <«—— GNBPS

Figure A.2-16 NFLTVDP Design Sheet

76



RDSPS

Position I/0 units

——» Loop over all MINTERMS for system fault tree
Read next minterm, T

Extract the MINTERM 1, for current SUBRUN

IF T d.oes not cover a previous MINTERM, THEN

l Enter T in fault tree data structure

ENDIF

Note: The logic in RDSPS and the order of MINTERM's stored on the
system minterm file assures that only a MINCUT set of minterms 1s
stored for the SUBRUN fault tree.

Figure A.2-17 RDSPS Design Sheet

77



GNFLTS

——» Loop over fault vector sets L, (n=1, 9)

» Loopover fe L,

Compute P*(t|§)
If P*(t| #) > PSTRNC, THEN

l Process § <«— PRFLTS

ENDIF

IF n>2and LCdid not affect calculation, THEN
Monitor relative change in Qg and P*g

IF "small”, end processing

ENDIF

Figure A.2-18 GNFLTS Design Sheet

78



PRFLTS

IF #20, check if § causes systems failure <+— CKSPS ()

— Case: £=0

Initialize display formats

Compute Q(t|0) <— UNRELQ
Display

— Case: #=20. £ does not cause system failure

Compute Q(t|#) <— UNRELQ

Display

— Case: £20, £ causes system failures

Compute P*(t.9) <4— FPSTAR

Display

Figure A.2-19 PRFLTS Design Sheet

79



CKSPS (8)

IFAIL = 0

IF 220, THEN

IFAIL = 1

IF SUBRUN fault tree, THEN

IF 2 does not cover any minterm, THEN

IFAIL = 0

ENDIF

ENDIF

ENDIF

Note: If there is no user supplied system fault tree or if the
extracted set of MINTERMS for a SUBRUN is empty, the
SUBRUN fault tree is assumed to be an OR tree.

Figure A.2-20 CKSPS Design Sheet

80



UNRELQ

—» Loop overt (= IT)

Compute K(t|#) <+— SUMMAT
Compute Q(t}#) « FINTGRT
L—»

Figure A.2-21 UNRELQ Design Sheet

81



GNCPS
Position 1/O units

———p» LOoOp over x

IF x,xisc.p., THEN

Compute N, 4——— GNNXX (x)

Write NXX data

ENDIF

>

IF NSTGS >1, THEN

——» Loop overy
————— Loop over x<y

IF x,yarecp., THEN

Compute Ny 4——— GNNXY (x,y)

Write NXY data

ENDIF

ENDIF

Figure A.2-22 GNCPS Design Sheet

82



GNNXX (x)

——» Loop over gy (kqx = 1,10)

Compute Nyy (ay)

Figure A.2-23 GNNXX Design Sheet

83



GNNXY (x,y) : [assume x<y]
—— Loop over gy (kqy = 1, 10)
————= Loop over q, (kqx = 1, 10)

Compute N,(ayqy)

Figure A.2-24 GNNXY Design Sheet

84



GNBPS

Position /O Units

—» Loop over x

Compute functions of time +—— GNTXX (x)
IF x,xi1s¢.p., THEN

Read NXX data

IF non-zero BXX data, THEN (n,22)

* Compute B, 4+—— GNBXX (x)

Jy ENDIF
ENDIF

Write BXX data

>

IF NSTGS >1, THEN

——® Loop over y

——® Loop over x<y

IF xyisc.p., THEN

Read NXY data

IF non-zero BXY data THEN (n,21and n,21)
Compute 8,, <+—— GNBXY (x.y)
Compute functions of time 4+—— GNTXY (x,y)

Write BXY data

y ENDIF
ENDIF
>
v —>
ENDIF

Figure A.2-25 GNBPS Design Sheet

85



GNBXX (x)

Loop over u, (= 0, £,)

Compute Byy (py)

Figure A.2-26 GNBXX Design Sheet

86



GNBIXY (x.y) [Assume x <y]

—» Loopovery, (= 0,4)
Loop over u, (= 0. £,)

Compute B,(y (Px,Py)

Figure A.2-27 GNBXY Design Sheet

87



GNTXX (x,y)
,_.; Loop over all time steps (t=IT)
Loop over all fault categories, x; (i =1,5)

Compute r(t)x)

Compute r (t|x)

F—’ Loop over all time steps (t = IT)

F_’ Loop over all fault categories, x (i = 1,5)
Compute A(tix), £ Ap, & At

Compute H_(tx), £ H, L H,
Compute he (4x), £ hey, T he,

Compute Hg (tx), L Hg,, Z Hag,
Compute (1-Z Hi,) ZA,, (1-ZH;) LA,

Compute Hg (t, x,)

’_.> Loop over all time steps (t=1T)

Loop over ali fauit categories, x; (i = 1,5)

Compute hor (4x), L hpry, £ hory

Figure A.2-28 GNTXX Design Sheet

88




GNTXY (x,y)
T_’ Loop over all time steps (t = IT)

Case: x,y

—» Loop over all fault categornies, x; (i = 1,5)
Loop over all fault categories, y, (j = 1,5)

Computﬂ hDP (ﬂy;. xo): z hDPp: z hDPT

—»

Case: y,x

— Loop over ail fauit categories, y, (j=1,5)
—» Loop over all fault categories, x; (i = 1,5)

Compute hop (Ux, y ), Zhoee, Z hopy

Figure A.2-29 GNTXY Design Sheet

&9



SUMMAT (t])

Position I/0 units, Process IS, Initialize

——p LOOp Over x

Read BXX data

Add X"} terms to SUMA

L »

~—3 LooOp over x

Generate x functions <«— GNFXX (t,x)
Read BXX data

IF x,xis¢c.p., THEN

IF non-zero BXX data, THEN (n,22 and 2,2 fc,)
Add \2! term to SUMA 4— FB2XX (x)
Add u term to SUMA <+— FBIXX (x)
Add \2) term to SUMC <+— FB2XX (x)
\
ENDIF
v
ENDIF

Figure A.2-30 SUMMAT Design Sheet

90



IF NSTGS > 1, THEN
~——p LOOp Over y
——p Loop over x<y

IF x,yisc.p., THEN

Read BXY data

IF non-zero BXY data, THEN (n,21 and n,2 1 and £, #¢,,and £,= f¢)
Add A2 term to SUMA <+— FB2XY (x,y)
Add u term to SUMA <« FBIXY (x,y)
Add A:2) term to S:IMC <— FB2XY (x,y)

v
ENDIF
\ 4
ENDIF

ENDIF

Compute P* (t|2), a'(t|#)

Compute K(t|#), store in SUMK(IS)

Figure A.2-30 SUMMAT Design Sheet (Continued)

gl



GNFXX (t, x)

IF 2,21, THEN

Compute §-1(x)

Compute P* (t|£-1 (x))

Compute n,-£,+ !

Compute PSLX (x) = (ny-fy+ 1)s P* (t}€-1 (x))
—p Loopoveri=1,2

Compute 1£,=f, i + 1

~—— LOOp over u=0, 12,

Compute 1 =i1f,+ 1

Compute FPMX (x, py,i1f) = P(t,u|ify)

ELSE

Compute FPMX (x,1,1) = P (t,0[0)

ENDIF

Figure A.2-31 GNFXX Design Sheet

92



FB1XX (x)

Case: P,x,x

SUMX = 0.
Loop over U, (=0,4y)

SUMX = SUMX + By (£1-Hy) * PLUGEO) * Wy * (1)

FBIXX = SUMX

Case: T,x,x
SUMX = 0.

{_.> Loop over u,(=0,4,)

E SUMX = SUMX + By (2l * Pltpofo) = U,
o

FBIXX = (ny-fy) * SUMX

Figure A.2-32 FB1XX Design Sheet

93



FBIXY (x,y)

Case: P,x,y

SUMY =0.
—> Loop over u, (=0.4,)
SUMX = 0.
Loop over i, (=0,4,)

SUMX = SUMX + Byy (fy-ity, By-l1y) * Pt 1,00 * 1,

SUMY = SUMY + SUMX * P(t,uif,) * W,

—»

FBIXY = SUMY

Case: P,y,x
SUMX = 0.
— Loop over |, (=0.4.)
SUMY = 0.
Loop over u, (=0,4,)

SUMY = SUMY + Byy (f-y, £l * P(LIIE,) * 1,

SUMX = SUMX + SUMY * P(t,ul8,) * 1,

FBIXY = SUMX

Figure A.2-33 FB1XY Design Sheet

94



Case: T,xy
SUMY =0.
—» Loop over u, (=0.4,)
SUMX = 0.
Loop over u, (=0,4,)

SUMX = SUMX + Bxy (ex'ux, ’y'uy) * P(t,u,‘,lx]

SUMY = SUMY + SUMX * P(t,,if) * 1,

—»

FBIXY = (ne-fy) * SUMY

Case: P,y,x

SUMX =0.
—» Loop over p, (=0.2,)
SUMY =0
Loop over u, (=0,8)

SUMY = SUMY + Byy (#y-ly, £y * P(tu,id,)

SUMX = SUMX + SUMY * P(t,ylf,) * by

>

FBIXY = (ny-#) * SUMX

Figure A.2-33 FB1XY Design Sheet (Continued)

95



FB2XX (x)

Case: P x,x

Increment #,
SUMX =0.
Loop over u,(=0,4,)

SUMX = SUMX + By, (£-Uy) * Pt U8 * Uy

FB2XX = SUMX

‘ Case: T,x,x

Increment £,
SUMX = 0.
Loop over u, {=0,4,)

SUMX = SUMX + By, (£-liy) “P(tu 40

FB2XX = (ny-£,) * SUMX

Figure A.2-34 FB2XX Design Sheet

96



FB2XY (x,y)

Case: P.xy

Increment 2,
SUMY =0.
—» Loop over u, (=0,4y)
SUMX = 0.
Loop over W, (=0.4y)

SUMX = SUMX « Byy (fx-Ux bpuy) * P(tugf) * Uy

SUMY = SUMY + SUMX * P(t,n,i8,)

—

FBIXY = SUMY

Case: P,y,x

Increment £,
SUMX =0.
—» Loop over u, (=04,)
SUMY = 0.
Loop over [y (=10.4y)

SUMY = SUMY + By, (-Hy, Bt * P(LIGA) * 1y

SUMX = SUMX + SUMY * P(t,u i)

L —»

FBIXY = SUMX

Figure A.2-35 FB2XY Design Sheet

97



Case: T,x,y
Increment 4,
SUMY =0.
—» Loop over u, (=0,4,)
SUMX = 0.
Loop over u,(=0.4,)

SUMX = SUMX + Bgy (l"ux, ly‘uy) * P(t,u‘]lx)

SUMY = SUMY + SUMX * P(t,u4,)

>

FBIXY = (ny-f,) * SUMY

Case: P,y,x

Increment 2,

SUMX =0.

—p Loop over u, (=0.2,)

SUMY = 0.
Loop over u, (=0.4,)

SUMY = SUMY + Bxy (ly‘uy, ’x'ux) * P(t,uyl’y)

SUMX = SUMX + SUMY * P(t,u/4,)

>

FBIXY = (n,-4,) * SUMX

Figure A.2-35 FB2XY Design Sheet (Continued)

98

e

C



Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA CR-166122, Revised [
4. Title and Subtitle T T 5. Report Date -
Correction, Improvement and Model Verification December 1987
of CARE III , Version 3 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
D. M. Rose, J. W. Manke, R. E. Altschul, and
D. L. Nelson

10. Work Unit No.
505-34-43-05

9. Performing Organization Name and Address

. . 11. Contract or Grant No.
Boeing Computer Services Company ontract or Grant No

Energy Technology Applications Division

Seattle, WA 98124 NAS1-16900

13. Type of Report and Period Covered

12. 8 ing A Name and Address
ponsoring Agency n Contractor RepOY‘t

National Aeronautics and Space Administration 14 Sponsoring Agency Code
Washington, DC 20546

15. Supplementary Notes

Salvatore J. Bavuso
NASA Project Engineer: NASA Langley Research Center
. Hampton, VA 23665
Interim Report

-~ Supersedes NASA CR-166122 dated April 1983.

16. Abstract

An independent verification of the CARE III mathematical model and computer code
was conducted and reported in NASA Contractor Report 166096, "Review and
Verification of CARE III Mathematical Model and Code: Interim Report." The
study uncovered some implementation errors that were corrected and are reported
in this document. The corrected CARE III program is called version 4. Thus the
document, "Correction, Improvement and Model Verification of CARE III," version
3 was written in April 1984. It is being published now as it has been
determined to contain a more accurate representation of CARE III than the
published document that preceded it in April 1983. This edition supersedes NASA
CR-166122 entitled, "Correction and Improvement of CARE III," version 3, April
1983.

7. Key Words (Suggested by Author(s)) 18. Distribution Statement
e b1 11ty modeling unclassified - unlimited
CARE I Subject cateaory 59

Fault coverage
Fault models
Fault-tolerant avionics

19. Security Classif. {of this report) 20. Security Classif. (of this page! 21. No. of pages 22. Price

unclassified unclassified 104 AOb6

NASA FORM 1626 OCT 86






